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The paper presents a mathematical model to control flies population using biocontrol agent parasitic 

wasps. Parasitic wasp will control the growth of larvae of flies and thus adult fly population. 

Mathematical analysis has been done by using stability theory of differential equation. 
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1. Introduction 

    Many tiny, parasitic wasps attack immature stages of flies. The wasps insert their eggs into 

the immature stages of several species of flies [1]. The white, legless wasp larvae feed inside 

the host and eventually kill it. The wasp completes its development, emerges as an adult and 

continues the process by searching out more hosts [7]. These small wasps only attack flies, 

they neither sting nor bite other insects, animals, or humans [3]. 

1.1 Model Formulation  

In this section, we formulate and analyze an eco-epidemiological model, which combines the 

two basic models; one describing the predator-prey dynamics of immature stage of flies i.e., 

pupae stage and parasitic wasps, and the other describing the disease transmission dynamics 

in human population through direct contact between susceptible and the infected individuals 

and indirect transmission through adult flies population [4]. 

        In the model formulation, it is assumed that the food-borne diseases, like typhoid fever 

spread due to direct contact between susceptible and the infected individuals, also indirect 

transmission through carriers, like flies population [8]. In this study, we assume that the one 

of the main mode of transmission of the disease is through indirect transmission. However, 
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other modes of transmission has been observed in the realistic scenario. Therefore, we 

assume that rest of modes of transmission of the diseases other than carrier are considered 

under the assumption of the direct contact between the susceptible and infected individuals 

[2].  

       It is well known fact that flies transport the bacteria of various infectious diseases, like 

typhoid, dysentery, etc., from the environment to the edibles of human population [6]. In this 

way the edibles of humans become contaminated with the bacteria of infectious diseases. 

Further, When humans consume this contaminated food, they contract diseases, like typhoid, 

dysentery, etc [5]. The control of the carrier population in a region, where human population 

reside is one of the effective method to control the spread of the carrier dependent infectious 

diseases.  

        Control measures, like chemical control includes the application of insecticides to target 

the immature stages as well as adult carrier population. Chemical control also include the use 

of larvicidal sprays, adulticidal baits, adulticidal space sprays and adulticidal surface 

treatments. These tools may leads to success for the carrier control. However, it has been 

observed that resistance to these chemicals has been developed in carriers. Therefore, the 

chemical approaches to control carrier population may not yield estimated results in the long 

run. On the other hand, biological control agents are more effective to control the growth of 

carrier population [4]. They almost deny the possibility of developing resistance to chemicals 

in carrier population. 

       In a region under consideration, we categories total human population into two 

epidemiological classes; susceptible individuals S(t) and infected individuals I(t) at a time t > 

0. We propose the control strategy for carrier population in a region by targeting the 

immature stage of carrier, i.e., pupae stage P(t) at a time t > 0. As carriers grow to adult stage 

through egg, larva, pupa. Therefore, control of any stage will leads to prevention of adult 

carrier. The adult carrier population C(t), thus transport the bacteria from the environment to 

edibles of human population. The natural organisms parasitic wasps W(t) is well known to 

control the pupae of carrier. The wasps insert their eggs into the pupae of flies. The white, 

legless wasp larvae feed inside the host and eventually kill it. The wasp completes its 

development inside the pupae of flies. In this way, the wasps emerges as an adult and 

continue the process by searching out new hosts. These small wasps only target pupae of 

flies. They neither sting nor bite other insects, animals, or humans. Therefore, its use is 
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preferential over the chemical based approaches and it does not harm any nontarget 

population like, human population. 

       Based on the above assumptions, the population dynamics of the carrierdependent 

infectious diseases and their control are governed by the following system of non-linear 

differential equations: 

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝛽𝑆𝐼 − 𝜆𝑆𝐶 − 𝜇𝑆 + 𝜈𝐼, 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 + 𝜆𝑆𝐶 − (𝛼 + 𝜇 + 𝜈)𝐼, 

𝑑𝑃

𝑑𝑡
= 𝑔𝐶 − 𝜇1𝑃 − 𝛼1𝑃2 − 𝛾𝑃 − 𝜙𝑃𝑊,                                                                                (1) 

𝑑𝐶

𝑑𝑡
= 𝛾𝑃 − 𝜃0𝐶, 

𝑑𝑊

𝑑𝑡
=  𝜅𝜙𝑃𝑊 − 𝜃1𝑊, 

In the model system (1), is analyzed with the following initial conditions 

S(0) > 0, I(0) > 0, P(0) ≥ 0, C(0) ≥ 0, W(0) ≥ 0. 

Here, we simplify the biological cycle of carrier population, like flies. The flies grow to adult 

through eggs, larvae and pupae, P with birth into pupae stage and natural death rate in each 

stage. From the perspective of epidemiology, adult fly will transport the bacteria from the 

environment and transport the humans’ edibles, leads to the transmission of disease in 

humans. Thus, pupae control is an important measure for adult fly control. For the immature 

fly, i.e., pupae, the natural death rate in human population and the maturation rate are µ and γ, 

respectively. Further, the crowding in pupae of fly cannot be ignored in small garbage area. 

Thus, we use α1 to denote the density dependent development mortality of pupae. To account 

for the predation of immature flies by predators, i.e., parasitic wasps W has been considered 

and we assume the bilinear response form with a constant rate ϕ, similar to that in Lotka-

Volterra model. 

      For the sake of simplicity, we write N(t) = S(t) + I(t). Now, it is easy to see that the model 

system (1) is equivalent to the following model system:  

𝑑𝑁

𝑑𝑡
= 𝐴 − 𝜇𝑁 + 𝛼𝐼, 

𝑑𝐼

𝑑𝑡
= (𝛽𝐼 + 𝜆𝐶)(𝑁 − 𝐼) − (𝛼 + 𝜇 + 𝜈)𝐼, 

𝑑𝑃

𝑑𝑡
= 𝑔𝐶 − 𝜇1𝑃 − 𝛼1𝑃2 − 𝛾𝑃 − 𝜙𝑃𝑊,                                                                                (2) 

𝑑𝐶

𝑑𝑡
= 𝛾𝑃 − 𝜃0𝐶, 
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𝑑𝑊

𝑑𝑡
=  𝜅𝜙𝑃𝑊 − 𝜃1𝑊, 

 Parameters definition  

A = constant birth or immigration rate,  

β = direct contact rate,  

λ = indirect transmission of the bacteria through flies,  

µ = natural death rate in humans,  

α = disease induced mortality,  

ν = recovery rate of infected humans,  

g = egg laying rate of flies,  

µ1 = natural death rate of pupae or death rate of pupae by other factors, like climatic factors,  

α1 = coefficient of intraspecific competition,  

γ = maturation rate (the rate at which pupae becomes adult),  

ϕ = depletion coefficient due to attack of parasitic wasps at fly’s pupae,  

k = the conversion efficiency of wasps,  

θ0 = death rate of adult fly population,  

θ1 = death rate of wasps.  

Our first task is to show that the model system (2) is biologically meaningful. 

2. Analysis of the systems’ equilibria 

2.1  Equilibria Feasibility 

We begin the model analysis by discussing the feasibility conditions of four nonnegative 

equilibria of the model system (2), which are listed as follows: 

(i) Disease free equilibrium E1 ( A /µ , 0, 0, 0, 0 ) is always feasible, 

(ii) Endemic equilibrium in absence of carrier E2 (N2, I2, 0, 0, 0) is feasible if, 

                                                                           Rp =  
𝛽 𝐴

𝜇(𝜈+𝛼+𝑑)
 > 1,                                          (3)     

(iii) The disease persistent equilibrium with carrier population in absence of wasps E3 

(N3, I3, P3, C3, 0) is feasible if                                         

                                               𝑅𝑝 =  
𝑔𝛾

𝜃0{𝜇1+𝛾}
> 1,                                                                   (4) 

(iv) The coexistence equilibrium E ∗ (N∗ , I∗ , P∗ , C∗ , W∗ ) is feasible if 

                                𝑅𝑤 =  
𝑔𝛾

𝜃0{𝜇1+𝛾+
𝛼1𝜃1

𝑘𝜙
}

> 1                                                         (5)  
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        At the disease free equilibrium E1 ( A /d , 0, 0, 0, 0 ) , no infected humans and carrier 

population are present, thus no control effort is needed. Therefore, total human population 

remains susceptible which equals to Ad−1 .  

        At the endemic equilibrium E2, only human population survives in absence of carriers 

and parasitic wasps. This shows that disease spread in human population due to direct contact 

between the susceptible and infected individuals.  

          At the disease persistent equilibrium E3, disease spread in human population when the 

carriers are present and parasitic wasps are absent.  

           At the coexistence equilibrium E∗, all the components are present. This captures the 

spread of the disease as well as control effort.  

           Now, we discuss the feasibility conditions of all the possible equilibria of the model 

system (2) one by one. The feasibility of the all equilibria of the model system (2) may be 

obtained by the setting the derivatives zero present in the model system (2).  

           We first find the components of the disease free equilibrium E1, using W = 0, P = 0 

and C = 0, and then from the second equilibrium equation of the model system (2), we choose 

I = 0. Thus, from the first equilibrium equation, total human population settles to Ad−1 .  

             Now substituting W = 0 in the third equilibrium equation of the model system (2), we 

discuss the feasibility of the equilibrium E2. From the fourth equilibrium equation, we have 

                                                                        𝐶2 =  
𝛾

𝜃0
𝑃2                                                        (6) 

Using equation (6) in the third equilibrium equation, we obtain either P2 = 0 or 

                                                  𝑃2 =
1

𝛼
{

𝑔𝛾

𝜃0
− (𝜇1 + 𝛾)},                                                         (7) 

Assuming P2 = 0, we have C2 = 0, from equation (6). Now, using C2 = 0 and the value of N2 

from the first equilibrium equation, in the second equilibrium equation of the model system 

(2), we obtain 

                                                     𝐼2 =  
𝜇(𝜈+𝛼+𝜇)

𝛽(𝛼+𝜇)
(𝑅0 − 1)                                                      (8) 

For the positive value of I2, the condition (3) must be satisfied, which is R0 > 1, where R0 

denotes the basic reproduction number of the disease when carrier and wasps are absent. It is 

defined as the average number of secondary infection caused by an index case in wholly 

susceptible population in an individuals’ entire infectious period. 

      Now, we discuss the feasibility of the equilibrium E3. From fifth equilibrium equation, 

we have W = 0. From the fourth equilibrium equation, we have 
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                                                                    𝐶3 =  
𝛾

𝜃0
𝑃3                                                           (9) 

Using equation (9) in the third equilibrium equation and assuming P3 ̸= 0, we obtain 

                                                  𝑃3 =
1

𝛼1
{

𝑔𝛾

𝜃0
− (𝜇1 + 𝛾)},                                                      (10) 

It is easy to see that P3 > 0, provided condition (4) is satisfied, which is Rp > 1. The 

expression Rp is meaningful, since one fly vector can produce an average of g pupae per unit 

time, which will survive upto an adult stage with the probability of γ µ1+γ , and (θ0) −1 is the 

average lifespan of the flies. Thus, the adult fly can produce gγ θ0(µ1+γ) adult flies in its 

lifetime. Denoting this threshold by Rp = gγ θ0(µ1+γ) , which is the feasibility condition (4), 

where wasps is absent. Borrowing the idea of basic reproduction number from biology [], we 

say Rp the carrier reproduction number. Substituting (10) in equation (9), we can obtain C3. 

Now using (9) and the value of N3 from the first equilibrium equation in the second 

equilibrium equation, we get the following quadratic 

                                                                   𝑎1𝐼3
2 + 𝑎2𝐼3 + 𝑎3 = 0,                                       (11) 

Where  

𝑎1 =  
𝛽 (𝛼+𝜇)

𝜇
  

𝑎2 =  
−𝛽 𝐴

𝜇
+

𝜆 (𝛼+𝜇)𝐶3

𝜇
+ 𝜈 + 𝛼 + 𝜇  

𝑎3 =  
−𝜆 𝐴𝐶3

𝜇
  

From the above expression a1, a2 and a3, we assert that the equation (11) has unique positive 

solution. Therefore, the equilibrium E3 is feasible if the condition (4) is satisfied. 

             Finally, we will find the conditions for the feasibility of the coexistence equilibrium 

E ∗ . The component of the coexistence equilibrium for the model system (2) may be 

obtained by the following set of algebraic equations: 

𝐴 − 𝜇𝑁 + 𝛼𝐼 = 0,                                                                                                                 (12) 

(𝛽𝐼 + 𝜆𝐶)(𝑁 − 𝐼) − (𝛼 + 𝜇 + 𝜈)𝐼 = 0,                                                                               (13) 

𝑔𝐶 − 𝜇1𝑃 − 𝛼1𝑃2 − 𝛾𝑃 − 𝜙𝑃𝑊 = 0,                                                                                  (14) 

𝛾𝑃 − 𝜃0𝐶 = 0,                                                                                                                       (15) 

 𝜅𝜙𝑃𝑊 − 𝜃1𝑊 = 0,                                                                                                              (16) 

Now from equation (16), we get W = 0 or 

                                                      𝑃∗ =
𝜃1

𝑘𝜙
                                                                            (17) 

then from equation (15), we obtain 
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                                                     𝐶∗ =
𝛾

𝜃0
𝑃∗                                                         (18) 

Using equations (17) and (18) in the equation (14), we get 

                                                   𝑊∗ =
𝛾

𝜃0
𝑃∗                                                        (19) 

Clearly, W∗ > 0 if the condition (5) is satisfied. Now, using the value of N∗ from the equation 

(12) in the equation (13), we obtain a quadratic equation in I ∗ as follows: 

                                                                𝑏1𝐼∗2 + 𝑏2𝐼∗ + 𝑏3 = 0,                                         (20) 

where 

𝑏1 =  
𝛽 (𝛼+𝜇)

𝜇
  

𝑏2 =  
−𝛽 𝐴

𝜇
+

𝜆 (𝛼+𝜇)𝐼∗

𝜇
+ 𝜈 + 𝛼 + 𝜇  

𝑏3 =  
−𝜆 𝐴𝐼∗

𝜇
  

It is clear from the above expressions that the equation (20) has a unique positive solution. 

Further, using the value of I ∗ in the equation (12), we obtain the value of N∗ . Therefore, the 

coexistence equilibrium E ∗ is feasible provided condition (5) is satisfied. 

2.2  Stability analysis 

       In this section, we discuss the stability of the equilibria. 

Theorem 1   (i) The equilibrium E1 is locally asymptotically stable if R0 < 1 and Rp < 1. 

(ii) The equilibrium E2 is locally asymptotically stable if R0 > 1 and Rp < 1. 

(iii) The equilibrium E3 is locally asymptotically stable if Rw < 1 and it is unstable if Rw > 1, 

i.e., when   

E ∗ exists. 

(iv) The equilibrium E ∗ is always locally asymptotically stable. 

Proof.  

The Jacobian matrix of the (2) is given by 

a11 = −d, a21 = βI + λC, a22 = (βI + λC) − β(N − I) + ν + α + µ, Let ψ denote an eigenvalue 

of the Jacobian matrix J. 

3 Conclusion 

           To control the spread of these diseases, it is advisable to keep away the edibles of 

humans so that humans will not contract the infection through flies. 
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